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ML has revolutionized a number of different fields.

ML Adoption Across Fields

Code (PL, 
SW Eng.)

LLMs (2022)

Heuristics, solvers, syntax trees + some ML Increasingly ML/AI
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NLP

Word2Vec (2013)

Symbolic/statistical methods + some ML Mostly ML (neural networks)

Computer
Vision

AlexNet (2012)

Wavelets, SIFT, Eigenfaces,... + some ML Mostly ML (neural networks)

20251960



What About Systems?
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Learning-Based Systems

Data Center 
Scheduling

Chip
Design

Compilers & 
Runtimes
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The Case for Learned Index Structures, Tim Kraska, Alex Beutel, Ed H. Chi, 
Jeffrey Dean, and Neoklis Polyzotis. (SIGMOD '18).

Example: Learned Index
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B-Tree Index Learned Index



ML for Systems has evolved into a community.
● Technical area within ASPLOS, EuroSys, MLSys.
● Workshops: ML for Systems (NeurIPS), EuroMLSys 

(EuroSys), PACMI (SOSP) and others.
● Research Initiatives: Architecture 2.0, Learning 

Directed Operating System (LDOS) and others.

ML for Systems Community
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Learning-based systems are showing clear promise. 
What will be the catalyst driving widespread adoption?

Learning-Based Systems

Systems

20251960 ???

Traditional techniques + some ML

There may not be a single answer.
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In other areas, clear abstractions enabled 
progress and principled approaches:
● Scheduling, Compiler Passes, Memory 

Allocation,…
In contrast, ML for Systems often requires 
significant amounts of ad-hoc work.

Why do abstractions matter?
10



Building a distributed system used to
be very challenging. Algorithms and
protocols had to be custom-built.
Consensus as a clear abstraction facilitated building of 
distributed systems. Consensus protocols (e.g., Paxos) 
and systems built on top of them evolved in parallel.
Today, we can build on standard frameworks and libraries.

Analogy: Distributed Systems
Grapevine: An Exercise in 

Distributed Computing
Andrew D. Birrell, Roy Levin, 

Roger M. Needham, and Michael 
D. Schroeder (Xerox PARC)
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Challenge: “ML for Systems” 
refers to a very wide range of 
different things.
To define abstractions for ML for systems, we need to 
be clear what ML is used for. We need a taxonomy.
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System Policy: Given a software or hardware component 
that makes decisions related to the execution of 
computer programs, a system policy describes how these 
decisions are made.
Learning-Based Systems: Systems that use machine 
learning in the implementation of a system policy.

Definitions
13

Martin Maas, "A Taxonomy of ML for Systems Problems," in IEEE Micro, 
vol. 40, no. 5, pp. 8-16, 1 Sept.-Oct. 2020, DOI: 10.1109/MM.2020.3012883.



Dimension 1: Application Area
● ML for databases: learned index structures, query optimization
● ML for compilers: cost models, vectorization
● ML for hardware design: chip placement, HW/SW co-design
● ML for accelerator design: neural architectures, exploration
● ML for memory management (and garbage collection)
● ML for cluster scheduling, resource allocation
● ML for configuration parameters tuning
● ML for prefetching, branch prediction
● ML for failure detection/prevention, performance regressions
● ML for network routing
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What does ML enable that a conventional approach could 
not do? (Not every problem benefits from ML.)

Anomaly Detection (e.g., detecting performance regressions)
Forecasting (e.g., predicting future application resource demands)
Extrapolation (e.g., classifying programs as scale-up or scale-out)
Discovery (e.g., coming up with new caching policies)
Optimization (e.g., ML for hardware design, autotuners)

Dimension 2: How ML is Used
15



Classifying Existing Work
Anomaly Detection Forecasting Extrapolation Discovery Optimization

Compiler Optimization

Query Optimization

Hardware Design

Cluster Scheduling

Memory Allocation

Networking

Prefetching
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Classifying Existing Work
Anomaly Detection Forecasting Extrapolation Discovery Optimization

Compiler Optimization

Query Optimization

Hardware Design

Cluster Scheduling

Memory Allocation

Networking

Prefetching

A learned performance model 
for tensor processing units, 

Kaufman et al. (MLSys’21)
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Classifying Existing Work
Anomaly Detection Forecasting Extrapolation Discovery Optimization

Compiler Optimization

Query Optimization

Hardware Design

Cluster Scheduling

Memory Allocation

Networking

Prefetching

Seer: Leveraging Big Data to Navigate the Complexity
of Performance Debugging in Cloud Microservices

Gan et al. (ASPLOS’19)
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Classifying Existing Work
Anomaly Detection Forecasting Extrapolation Discovery Optimization

Compiler Optimization

Query Optimization

Hardware Design

Cluster Scheduling

Memory Allocation

Networking

Prefetching

Learning Memory Access 
Patterns

Hashemi et al. (ICLR, 2018)
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Classifying Existing Work
Anomaly Detection Forecasting Extrapolation Discovery Optimization

Compiler Optimization

Query Optimization

Hardware Design

Cluster Scheduling

Memory Allocation

Networking

Prefetching

Challenge: Quadratic number of 
areas, each requiring new data 
sets, libraries and interfaces.
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Can we create reusable recipes that apply across a wide 
range of different domains?
● How to translate ML predictions into system decisions.
● How to tolerate ML prediction errors.
● How to handle noisy and unpredictable data.
● How to handle workloads that drift over time.
● How to solve NP-complete problems with ML.

Conceptual Abstractions
21



Let’s look at an example.
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4KB/2MB PageC/C++ Application

TCMalloc

string* s = new string(“Google”);
…
delete s;

Time
M

em
or

y A
dd

re
ss

Object Size

Lifetime

Example: Memory Allocation
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“Learning-based Memory Allocation for C++ Server Workloads”, ASPLOS 2020, Martin Maas, David G. Andersen, 
Michael Isard, Mohammad Mahdi Javanmard, Kathryn S. McKinley, Colin Raffel
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Page 2

Page 1

Huge Page Fragmentation

“Learning-based Memory Allocation for C++ Server Workloads”, ASPLOS 2020, Martin Maas, David G. Andersen, 
Michael Isard, Mohammad Mahdi Javanmard, Kathryn S. McKinley, Colin Raffel
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Time

A
dd

re
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Page 2

Long-lived object

Page 1

Huge Page Fragmentation

“Learning-based Memory Allocation for C++ Server Workloads”, ASPLOS 2020, Martin Maas, David G. Andersen, 
Michael Isard, Mohammad Mahdi Javanmard, Kathryn S. McKinley, Colin Raffel
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Time
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Page 2

Page 1

Wasted memory!

Huge Page Fragmentation

“Learning-based Memory Allocation for C++ Server Workloads”, ASPLOS 2020, Martin Maas, David G. Andersen, 
Michael Isard, Mohammad Mahdi Javanmard, Kathryn S. McKinley, Colin Raffel
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Time

A
dd

re
ss

Page 2

Page 1

Wasted memory!

Huge Page Fragmentation
To minimize fragmentation, we need information 
we do not have (the lifetime of an object).

“Learning-based Memory Allocation for C++ Server Workloads”, ASPLOS 2020, Martin Maas, David G. Andersen, 
Michael Isard, Mohammad Mahdi Javanmard, Kathryn S. McKinley, Colin Raffel
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Symbols within stack traces contain meaning and encode 
programmer intent. Apply ML to this information in order 
to predict object lifetimes that the allocator then uses.

      Using ML for Forecasting

1. __gnu_cxx::__g::__string_base<char, std::__g::char_traits<char>, 
std::__g::allocator<char> >::_M_reserve(unsigned long)

2. proto2::internal::InlineGreedyStringParser(std::__g::basic_string<char, 
std::__g::char_traits<char>, std::__g::allocator<char> >*, char const*, 
proto2::internal::ParseContext*)

3. proto2::FileDescriptorProto::_InternalParse(char const*, 
proto2::internal::ParseContext*)

4. proto2::MessageLite::ParseFromArray(void const*, int)
5. proto2::DescriptorPool::TryFindFileInFallbackDatabase(std::__g::basic_string<char, 

std::__g::char_traits<char>, std::__g::allocator<char> > const&) const
6. proto2::DescriptorPool::FindFileByName(std::__g::basic_string<char, 

std::__g::char_traits<char>, std::__g::allocator<char> > const&) const
7. proto2::internal::AssignDescriptors(proto2::internal::AssignDescriptorsTable*)
8. store2::Algorithm_descriptor()
9. store2::init_module_algorithm_parse()

10. Initializer::TypeData::RunIfNecessary(GoogleInitializer*)
11. Initializer::RunInitializers(char const*)
12. RealInit(char const*, int*, char***, bool, bool)
13. main

E.g., the name ParseContext suggests 
that an object is temporary/local to the 
parsing operation.
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“Learning-based Memory Allocation for C++ Server Workloads”, ASPLOS 2020, Martin Maas, David G. Andersen, 
Michael Isard, Mohammad Mahdi Javanmard, Kathryn S. McKinley, Colin Raffel



     The LLAMA Allocator
• • • • • • • • • • • • • • • • • •< 10 ms

< 100 ms

< 1 s 
• • • • • • • • • •

• • • • • • • • • • • • • • • •

Huge Page
●  Residual Allocation LC Lifetime Classblocks

freed to OS

freed to OS

Pack objects with the same predicted lifetime into the
same regions and fill gaps with shorter-lived objects
Allocator can detect and adapt to model mispredictions
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“Learning-based Memory Allocation for C++ Server Workloads”, ASPLOS 2020, Martin Maas, David G. Andersen, 
Michael Isard, Mohammad Mahdi Javanmard, Kathryn S. McKinley, Colin Raffel



Recipe: Separate a 
policy into a predictor 
and an algorithm that 
can tolerate errors.

30

Prediction



Generalizes to Storage Systems

Metadata attached to storage requests helps predict behavior.

Analytics Pipeline SQL
Database

Web Frontend

Distributed FS Disk Server

Origin: B
Device: Mobile

Origin: A
Priority: Best Effort

Origin: A
Priority: Best Effort
Query: SELECT

31

“Learning on Distributed Traces for Data Center Storage Systems”, MLSys 2021, Giulio Zhou, Martin Maas



Storage Prediction Tasks
Origin: <info>
Request_Type: A/B/C/D

Disk Server

Cache? Predictable Property:
• Interarrival Times (Caching)

Algorithms:
• Cache admission and eviction.

“Learning on Distributed Traces for Data Center Storage Systems”, MLSys 2021, Giulio Zhou, Martin Maas
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Storage Prediction Tasks
Origin: <info>
Request_Type: A/B/C/D

Disk Server

Cache? Predictable Property:
• Interarrival Times (Caching)
• File Lifetime
• Final File Size
• Read/Write Ratio

Algorithms:
• Cache admission and eviction.
• Place data on SSD vs. HDD.

“Learning on Distributed Traces for Data Center Storage Systems”, MLSys 2021, Giulio Zhou, Martin Maas
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Challenge: Some properties 
are noisy and unpredictable.

34



Unpredictable Properties
Origin: <info>
Request_Type: A/B/C/D

CDF by Request Type

Disk Server

Cache?

“Learning on Distributed Traces for Data Center Storage Systems”, MLSys 2021, Giulio Zhou, Martin Maas
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Learning for Storage

Origin: A
Priority: Best Effort
Query: SELECT

Admit/evict object?
Memory placement?
Place on SSD or HDD?

Predicted
Distributions

Distribution-aware 
Heuristic/Algorithm

36

Disk Server

Models

“Learning on Distributed Traces for Data Center Storage Systems”, MLSys 2021, Giulio Zhou, Martin Maas



Recipe: Predict 
Distributions instead 
of specific values.
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Challenge: What if the 
workloads shift over time?
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“Bring Your Own Model”
39

Disk Server

Origin: A
Priority: Best Effort
Query: SELECT

Model in the system

Disk Server

Origin: A
Priority: Best Effort
Query: SELECT
Predictions

Model in the workload

“A Bring-Your-Own-Model Approach for ML-Driven Storage Placement in Warehouse-Scale Computers”, MLSys 2025, Chenxi 
Yang, Yan Li, Martin Maas, Mustafa Uysal, Ubaid Ullah Hafeez, Arif Merchant, Richard McDougall



Recipe: Move the 
model into the 
workload.
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Challenge: Some problems 
are very sensitive to errors.

41



TPUv4 Pixel 6 Tensor SoC

Memory Allocation: Take buffers with 
known start and end times and place them 
in a location within on-chip memory.

ML Accelerator Compilation
42

“TelaMalloc: Efficient On-Chip Memory Allocation for Production Machine Learning Accelerators”, ASPLOS 2023, Martin Maas, 
Ulysse Beaugnon, Arun Chauhan, Berkin Ilbeyi
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High-Level Problem
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“TelaMalloc: Efficient On-Chip Memory Allocation for Production Machine Learning Accelerators”, ASPLOS 2023, Martin Maas, 
Ulysse Beaugnon, Arun Chauhan, Berkin Ilbeyi



Given a sequence of fixed-size buffers with a known start 
and end time, place them in memory such that total used 
memory never exceeds capacity.

Time

M
em

or
y A

A B C
B

C

Memory Allocation
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“TelaMalloc: Efficient On-Chip Memory Allocation for Production Machine Learning Accelerators”, ASPLOS 2023, Martin Maas, 
Ulysse Beaugnon, Arun Chauhan, Berkin Ilbeyi



Heuristics: Fast, but do not always find a solution.
Solvers: Can handle complex inputs, but sometimes slow.

A Complex NP-Hard Problem
45



Limitations of Heuristics

Time

A
dd

re
ss

✘

– ✘ Buffer (1) exceeds limit
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“TelaMalloc: Efficient On-Chip Memory Allocation for Production Machine Learning Accelerators”, ASPLOS 2023, Martin Maas, 
Ulysse Beaugnon, Arun Chauhan, Berkin Ilbeyi



Limitations of Heuristics
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✔✘

– ✘ Buffer (1) exceeds limit
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“TelaMalloc: Efficient On-Chip Memory Allocation for Production Machine Learning Accelerators”, ASPLOS 2023, Martin Maas, 
Ulysse Beaugnon, Arun Chauhan, Berkin Ilbeyi



Recipe: Enforce 
correctness by using 
ML to guide a solver.
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Decision

Success/fail

Backtrack
Query constraints

The Telamon Framework

Search 
Policy CP Solver
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“TelaMalloc: Efficient On-Chip Memory Allocation for Production Machine Learning Accelerators”, ASPLOS 2023, Martin Maas, 
Ulysse Beaugnon, Arun Chauhan, Berkin Ilbeyi



Pixel 6 TPUv4

Shipping in Production
50

“TelaMalloc: Efficient On-Chip Memory Allocation for Production Machine Learning Accelerators”, ASPLOS 2023, Martin Maas, 
Ulysse Beaugnon, Arun Chauhan, Berkin Ilbeyi



Decision

Success/fail

Backtrack
Query constraints

Where can we apply ML?

Search
Policy CP Solver

51

“TelaMalloc: Efficient On-Chip Memory Allocation for Production Machine Learning Accelerators”, ASPLOS 2023, Martin Maas, 
Ulysse Beaugnon, Arun Chauhan, Berkin Ilbeyi



The Backtracking Problem
How far to 
backtrack?

52



Imitation Learning

Features

Training Set
Minimum

backtrack point

Best backtrack 
point

Model Training

TelaMalloc

Learned backtracking

Randomized 
TelaMalloc Run

Backtrack!

ILP Solver
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“TelaMalloc: Efficient On-Chip Memory Allocation for Production Machine Learning Accelerators”, ASPLOS 2023, Martin Maas, 
Ulysse Beaugnon, Arun Chauhan, Berkin Ilbeyi



Recipe: Learn a 
heuristic using 
imitation learning.
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We have just seen five different ML for Systems recipes:
● Split policies into prediction + error-tolerant algorithm.
● Predict distributions for noisy data.
● Move the models out of the system if drift is high.
● Combine ML with a solver if high precision is required.
● Use imitation learning if problems can be solved offline.

This is only a small subset!

Recap: ML for Systems Recipes
55



Catalyst #1:
Critical mass of 
generalizable 
design recipes.
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A common perception is that 
using ML in low-level systems 
is not practical.
Current systems are not designed to use ML, just like 
systems were not always designed for multi-threading.
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Building ML into VM allocation for Google Compute 
Engine (GCE). 100s to 10,000+ hosts per cluster, 10-100 
scheduling request/second per cluster, 

Cluster Scheduling at Google
60

Host

VM #1VM #2

VM #3

VM #1

Empty host

Host Host

Scoring
Pool 
Scheduler
(Borg Prime)VM

Request

“LAVA: Lifetime-Aware VM Allocation with Learned Distributions and 
Adaptation to Mispredictions”, MLSys 2025, Jianheng Ling, Pratik Worah, Yawen 
Wang, Yunchuan Kong, Chunlei Wang, Clifford Stein, Diwakar Gupta, Jason 
Behmer, Logan A. Bush, Prakash Ramanan, Rajesh Kumar, Thomas Chestna, 
Yajing Liu, Ying Liu, Ye Zhao, Kathryn S. McKinley, Meeyoung Park, Martin Maas



An instance of the predictor+algorithm recipe applied to 
VM allocation. Approach: Lifetime-Aware VM Allocation.

The LAVA Approach
61

Host

VM #1VM #2

VM #3

VM #1

Empty host

Pool 
Scheduler
(Borg Prime)

VM Lifetime

Predictions

Host Host

VM
Request

Lifetime-Aware
VM Allocation

“LAVA: Lifetime-Aware VM Allocation with Learned Distributions and 
Adaptation to Mispredictions”, MLSys 2025, Jianheng Ling, Pratik Worah, Yawen 
Wang, Yunchuan Kong, Chunlei Wang, Clifford Stein, Diwakar Gupta, Jason 
Behmer, Logan A. Bush, Prakash Ramanan, Rajesh Kumar, Thomas Chestna, 
Yajing Liu, Ying Liu, Ye Zhao, Kathryn S. McKinley, Meeyoung Park, Martin Maas



Distribution-based prediction
with repredictions over time.

The LAVA Approach
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Host

VM #1VM #2

VM #3

VM #1

Empty host

Pool 
Scheduler
(Borg Prime)

VM Lifetime

Predictions

Host Host

VM
Request

Lifetime-Aware
VM Allocation

“LAVA: Lifetime-Aware VM Allocation with Learned Distributions and 
Adaptation to Mispredictions”, MLSys 2025, Jianheng Ling, Pratik Worah, Yawen 
Wang, Yunchuan Kong, Chunlei Wang, Clifford Stein, Diwakar Gupta, Jason 
Behmer, Logan A. Bush, Prakash Ramanan, Rajesh Kumar, Thomas Chestna, 
Yajing Liu, Ying Liu, Ye Zhao, Kathryn S. McKinley, Meeyoung Park, Martin Maas



Scheduling algorithm corrects for
mispredictions, similar to LLAMA.

The LAVA Approach
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Host
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VM Lifetime

Predictions

Host Host
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Scheduler
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“LAVA: Lifetime-Aware VM Allocation with Learned Distributions and 
Adaptation to Mispredictions”, MLSys 2025, Jianheng Ling, Pratik Worah, Yawen 
Wang, Yunchuan Kong, Chunlei Wang, Clifford Stein, Diwakar Gupta, Jason 
Behmer, Logan A. Bush, Prakash Ramanan, Rajesh Kumar, Thomas Chestna, 
Yajing Liu, Ying Liu, Ye Zhao, Kathryn S. McKinley, Meeyoung Park, Martin Maas



Deploying learning-based systems has unique challenges, 
which we expect to generalize across different settings:
● Latency Constraints.
● Safety and correctness guarantees.
● Integration into rollout processes.
● Explainability and interpretability.

Deploying ML in Systems
64



Prediction is on the critical path for VM scheduling and 
may involve re-scoring O(10-100) VMs per request.
● Gradient boosted trees.
● Run within the scheduler

itself, not on other servers.
● Median latency is 9 us.

Prediction Latency
65



Model stays up-to-date for months, is updated regularly.
● Offline training with careful backtesting.
● Model is subject to testing and gradual roll-out.
● Careful monitoring for 

production regressions.
● Ran pilots with causal 

analysis and A/B testing.

Safety & Correctness
66



Rollout Processes
Option 1: Roll out the model independently of the system.
● ✔ Allows updating model more often than the system.
● ✘ Might break verification assumptions.
Option 2: Roll out model with the system binary. (Ours)
● ✔ Can leverage existing rollout testing.
● ✘ Model might be stale when it reaches production.
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Explainability/Interpretability
● Model the problem in a way that it becomes naturally 

interpretable (e.g., predictor+algorithm recipe).
● Use explainable model libraries (e.g., decision trees).
● Use interpretability techniques (e.g., TCAV).

68

Feature importance for LAVA 
models, calculated by the 
gradient boosted tree library.



We had to build a lot of custom 
infrastructure and change our 
systems to integrate ML.
Building general systems that enable such approaches is 
a great research opportunity for academia and industry.
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There is sometimes a 
perception that ML for 
Systems is difficult to work
on in academia.
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Myths about ML for Systems
Myth #1: ML for Systems needs lots of data.
● Academia-scale system deployments often produce 

sufficient amounts of data.
● Among ML application areas, this might make ML for 

Systems particularly well-suited for academia.
● The lifetime-based memory allocation paper could 

have been done in academia.
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Myths about ML for Systems
Myth #2: ML for Systems needs lots of compute.
● A lot of work can be done without fine-tuning or other 

expensive model training.
● Cheap models (e.g., random forests) are often enough.
● Can build on publicly available models, in the cloud or 

open-weight models (e.g., Gemma).
● Leverage in-context learning instead of training.
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Myths about ML for Systems
Myth #3: I need to be a Machine Learning Expert.
● Many problems in this space are systems problems.
● Can often treat ML as opaque building block.
● LLMs further reduce the learning curve.
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Example: ML-Enabled Systems
Lots of work in the community (an incomplete list):
● LAKE: ML-enabled OS Kernel.

“Towards a Machine Learning-Assisted Kernel with LAKE”, Henrique Fingler, et al., ASPLOS’23.

● ArchGym: Environment for ML for hardware.
“ArchGym: An Open-Source Gymnasium for Machine Learning Assisted Architecture Design”, Srivatsan Krishnan, et al., ISCA’23.

● DeathStarBench/Sage/Seer: ML for microservices.
“An Open-Source Benchmark Suite for Microservices and Their Hardware-Software Implications for Cloud & Edge Systems”, Yu Gan, et al., ASPLOS’19.

● MLGO: Integrating ML into LLVM.
“MLGO: a Machine Learning Guided Compiler Optimizations Framework”, Mircea Trofin, et al., arXiv:2101.04808.

● Scalene: Integrating ML into performance profiling.
“Triangulating python performance issues with SCALENE”, Emery Berger, et al., OSDI’23.

74



Example: ML Libraries
Easy-to-deploy random forest library:
● Trains from the command line.
● Integrates into C++, Python 

binaries, etc. at very low latency. 
● Can ship models with a binary or 

load them from a file system.
● Explainability support built in. Latency of Telamon

models: 2us/sample
Yggdrasil Decision Forests: A Fast and Extensible Decision Forests Library, Guillame-Bert et al., KDD 2023
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Example: HW/SW Co-Design
Opportunities for academic research on HW/SW 
co-design for learning-based systems.

● What hardware extensions would facilitate machine 
learning in low levels of the stack?

● The emergence of the open RISC-V Instruction Set 
greatly facilitates this kind of work:
○ Enables research using real hardware designs.
○ An opportunity to influence a real ISA?
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Example: Industry Datasets

https://github.com/google-research-datasets/thesios

2-month-long synthesized 
traces from 3 different 
Google storage clusters, 
containing approximately 
2.5 billion I/O records.

77

“Thesios: Synthesizing Accurate Counterfactual I/O Traces from I/O Samples”, ASPLOS 2024, Phitchaya Mangpo Phothilimthana, 
Saurabh Kadekodi, Soroush Ghodrati, Selene Moon, Martin Maas

https://github.com/google-research-datasets/thesios


Catalyst #2:
Systems and 
infrastructure
that facilitate the 
integration of ML.
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Over the past 5 years, we have 
seen a rapid increase in AI 
capabilities, especially GenAI.

81



Capability Delta: What are things that AI can do that we 
cannot possibly do with conventional approaches?
● In image classification, no non-learning technique 

achieved the performance of DNNs.
● No non-AI technique was able to generate 

photorealistic images like GANs and later GenAI.
● In the natural sciences, AlphaFold enabled protein 

folding at a scale that was previously impossible.

The AI Capability Delta
82



What is the Capability Delta
for Systems?

83



What if the value of AI is not 
only to improve systems, but 
to accelerate their evolution?
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Once a systems problem is established, researchers 
spend years or decades to optimize solutions.

The System Optimization Loop
85

Systems Problem

Research + Engineering Community



Once a systems problem is established, researchers 
spend years or decades to optimize solutions.

The System Optimization Loop
86

Berkeley NOW ⇒ MapReduce ⇒ …
⇒ Spark, Beam and others

New programming models, optimizations



Once a systems problem is established, researchers 
spend years or decades to optimize solutions.

The System Optimization Loop
87

System R ⇒ Oracle DB ⇒ …
⇒ Modern Databases

Query optimization, JITs, cardinality
estimation, performance tuning,...



Can AI improve the optimization loop of systems?
● Quality: Find optimizations a human did not find or 

would not have thought of.
● Velocity: Get to an efficient system more quickly.
● Coverage: Optimize systems that would otherwise not 

have enough support to be optimized.

Automatic Optimization
88



ECO – Efficient Code Optimizer
Hannah Lin, Martin Maas, Maximilian Roquemore, Arman Hasanzadeh, Fred Lewis, Yusuf Simonson, 
Tzu-Wei Yang, Amir Yazdanbakhsh, Deniz Altinbüken, Florin Papa, Maggie Nolan Edmonds, Aditya 
Patil, Don Schwarz, Satish Chandra, Chris Kennelly, Milad Hashemi, Parthasarathy Ranganathan
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More details: arXiv:2503.15669



Optimizing Google’s Code
Google’s Planet Scale Infrastructure:
● A global fleet of warehouse-scale computers.
● Mono-repo with billions of lines of code.
● Engineers spend a large amount of time optimizing 

code, including with automated tools.
ECO uses AI to improve the optimization loop.

Potvin, R., & Levenberg, J. (2016). Why Google stores billions of lines of code in a single repository. 
Communications of the ACM, 59(7), 78-87.
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LLM

Scaling Up Code Optimization
Code

Repository Code Retrieval 
& Ranking

Anti-Patterns Candidate

**Task**: Identify and 
eliminate redundant 
lookups in map or set 
operations in C++ to 
optimize performance …

LLM Edit Generation

Code Edit

Edit Validation

Code Review Submit & Monitoring

# Check for const reference replacement
You are a C++ performance engineer reviewing code for optimal usage of const references.
Assess the code snippet's handling of local variable declarations and their initialization.

Monitoring

Code Review

# Check for const reference replacement
You are a C++ performance engineer reviewing code for optimal usage of const references.
Assess the code snippet's handling of local variable declarations and their initialization.You are an expert C++ performance 

engineer reviewing a code change. 
The goal is to reduce redundant …
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Code Edit Anti-Patterns
Find examples of performance-improving changes in 
the edit history of Google’s large mono-repo.
● Static Analysis
● Annotations
● Keyword Search
● Documentation
Over 55K changes stored in a database.
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Use continuous profiling across our fleet and annotate 
functions with resource consumption.
● A large fraction of resources are in library functions 

(e.g., vector::push_back).
● Roll up resource to 

identify the most 
relevant functions.

Capturing Candidates
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Code Retrieval
Encode candidates and store them
in a vector database (ScaNN).
Used different embeddings (mappings
from code into the vector space):
● Bag of words
● Deep embeddings
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Validation & Code Review
Validate changes via LLM prompting and testing.
● Leverage automated testing and self-review to 

ensure changes are correct and high quality.
● Sent out to human reviewers for code review.
● After submission, monitor impact fleet-wide.
Note that the human is still in the loop, but we rapidly 
speed up and scale up the ability to optimize.
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Impact
● Over 25K lines of code changes submitted in 1 

year.
● Saved the equivalent of 2M (normalized) CPU cores.
● Less than 0.5% of changes had to be rolled back.
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How did AI do better than the human optimization loop?
● Quality: Optimizing highly optimized code that was 

already optimized by humans.
● Velocity: 6.4K changes submitted in 1 year.
● Coverage: Optimized code that individually consumes 

too little resources to justify the human effort.
AI enables new systems approaches today.

Automatic Optimization
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Forward-Looking Directions
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Reasoning can unlock new systems capabilities. Consider 
deciding which of two programs will complete first:

AI Reasoning Capabilities
103

p = new File(“/tmp/book.txt”);
for (i = 0; i < kNumPages; ++i) {
  convertToJPEG(p.ReadNext());
}

p = new File(“/tmp/movie.avi”);
for (i = 0; i < kNumFrames; ++i) {
  convertToJPEG(p.ReadNext());
}

To a compiler, these two programs look the same, but a 
human would be able to tell the likely answer.



LLM Response
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What could systems do with these capabilities? 

Gemini 2.0 Flash



Catalyst #3: 
GenAI enables 
new approaches 
that would not be 
possible without it.
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Talk Outline
Conceptual Abstractions
Standardized ways for building learning into systems1
ML Support in Systems
Best practices for deploying learning-based systems2
Growing AI Capabilities
GenAI and other approaches3
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Conclusion



Improved abstractions and support can create a positive 
feedback loop for ML for Systems adoption.
Many of the challenges are similar to transitions the 
systems community has made before (single-node to 
distributed systems, single-core to multi-core).
Growing AI capabilities generate new opportunities that 
would not have been possible before.

Conclusion
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Has ML for Systems reached 
an inflection point?
All the ingredients are there.
What it will look like and when it will manifest depends
on the people in this room.
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Thank you.
Martin Maas
mmaas@google.com
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