
Has Machine Learning
for Systems Reached
an Inflection Point?

Martin Maas (Google DeepMind)
ASPLOS & EuroSys Plenary Session (April 1, 2025) – Keynote

Presenting the work of many people.

ML has revolutionized a number of different fields.

ML Adoption Across Fields

Code (PL,
SW Eng.)

LLMs (2022)

Heuristics, solvers, syntax trees + some ML Increasingly ML/AI

2

NLP

Word2Vec (2013)

Symbolic/statistical methods + some ML Mostly ML (neural networks)

Computer
Vision

AlexNet (2012)

Wavelets, SIFT, Eigenfaces,... + some ML Mostly ML (neural networks)

20251960

What About Systems?

3

Learning-Based Systems

Data Center
Scheduling

Chip
Design

Compilers &
Runtimes

4

The Case for Learned Index Structures, Tim Kraska, Alex Beutel, Ed H. Chi,
Jeffrey Dean, and Neoklis Polyzotis. (SIGMOD '18).

Example: Learned Index
5

B-Tree Index Learned Index

ML for Systems has evolved into a community.
● Technical area within ASPLOS, EuroSys, MLSys.
● Workshops: ML for Systems (NeurIPS), EuroMLSys

(EuroSys), PACMI (SOSP) and others.
● Research Initiatives: Architecture 2.0, Learning

Directed Operating System (LDOS) and others.

ML for Systems Community
6

Learning-based systems are showing clear promise.
What will be the catalyst driving widespread adoption?

Learning-Based Systems

Systems

20251960 ???

Traditional techniques + some ML

There may not be a single answer.

7

Talk Outline
Conceptual Abstractions
Standardized ways for building learning into systems1
ML Support in Systems
Best practices for deploying learning-based systems2
Growing AI Capabilities
GenAI and other approaches3

8

Talk Outline
Conceptual Abstractions
Standardized ways for building learning into systems1
ML Support in Systems
Best practices for deploying learning-based systems2
Growing AI Capabilities
GenAI and other approaches3

9

In other areas, clear abstractions enabled
progress and principled approaches:
● Scheduling, Compiler Passes, Memory

Allocation,…
In contrast, ML for Systems often requires
significant amounts of ad-hoc work.

Why do abstractions matter?
10

Building a distributed system used to
be very challenging. Algorithms and
protocols had to be custom-built.
Consensus as a clear abstraction facilitated building of
distributed systems. Consensus protocols (e.g., Paxos)
and systems built on top of them evolved in parallel.
Today, we can build on standard frameworks and libraries.

Analogy: Distributed Systems
Grapevine: An Exercise in

Distributed Computing
Andrew D. Birrell, Roy Levin,

Roger M. Needham, and Michael
D. Schroeder (Xerox PARC)

11

Challenge: “ML for Systems”
refers to a very wide range of
different things.
To define abstractions for ML for systems, we need to
be clear what ML is used for. We need a taxonomy.

12

System Policy: Given a software or hardware component
that makes decisions related to the execution of
computer programs, a system policy describes how these
decisions are made.
Learning-Based Systems: Systems that use machine
learning in the implementation of a system policy.

Definitions
13

Martin Maas, "A Taxonomy of ML for Systems Problems," in IEEE Micro,
vol. 40, no. 5, pp. 8-16, 1 Sept.-Oct. 2020, DOI: 10.1109/MM.2020.3012883.

Dimension 1: Application Area
● ML for databases: learned index structures, query optimization
● ML for compilers: cost models, vectorization
● ML for hardware design: chip placement, HW/SW co-design
● ML for accelerator design: neural architectures, exploration
● ML for memory management (and garbage collection)
● ML for cluster scheduling, resource allocation
● ML for configuration parameters tuning
● ML for prefetching, branch prediction
● ML for failure detection/prevention, performance regressions
● ML for network routing

14

https://arxiv.org/abs/1712.01208
https://arxiv.org/pdf/1808.03196v2.pdf
https://arxiv.org/abs/1808.07412
https://people.eecs.berkeley.edu/~ysshao/assets/papers/hajali2020-cgo.pdf
https://arxiv.org/abs/2004.10746
https://arxiv.org/abs/2010.02075
https://arxiv.org/abs/2102.01723
https://arxiv.org/abs/2102.01723
https://research.google/pubs/learning-based-memory-allocation-for-c-server-workloads/
https://arxiv.org/abs/2004.13301
http://people.csail.mit.edu/hongzi/content/publications/Decima-Sigcomm19.pdf
https://www.csl.cornell.edu/~delimitrou/papers/2014.asplos.quasar.pdf
https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/46180.pdf
https://arxiv.org/abs/1803.02329
https://www.cs.utexas.edu/~lin/papers/tocs02.pdf
https://www.csl.cornell.edu/~delimitrou/papers/2019.asplos.seer.pdf
https://arxiv.org/abs/1709.07536
https://arxiv.org/pdf/1709.08339.pdf

What does ML enable that a conventional approach could
not do? (Not every problem benefits from ML.)

Anomaly Detection (e.g., detecting performance regressions)
Forecasting (e.g., predicting future application resource demands)
Extrapolation (e.g., classifying programs as scale-up or scale-out)
Discovery (e.g., coming up with new caching policies)
Optimization (e.g., ML for hardware design, autotuners)

Dimension 2: How ML is Used
15

Classifying Existing Work
Anomaly Detection Forecasting Extrapolation Discovery Optimization

Compiler Optimization

Query Optimization

Hardware Design

Cluster Scheduling

Memory Allocation

Networking

Prefetching

16

Classifying Existing Work
Anomaly Detection Forecasting Extrapolation Discovery Optimization

Compiler Optimization

Query Optimization

Hardware Design

Cluster Scheduling

Memory Allocation

Networking

Prefetching

A learned performance model
for tensor processing units,

Kaufman et al. (MLSys’21)

17

Classifying Existing Work
Anomaly Detection Forecasting Extrapolation Discovery Optimization

Compiler Optimization

Query Optimization

Hardware Design

Cluster Scheduling

Memory Allocation

Networking

Prefetching

Seer: Leveraging Big Data to Navigate the Complexity
of Performance Debugging in Cloud Microservices

Gan et al. (ASPLOS’19)

18

Classifying Existing Work
Anomaly Detection Forecasting Extrapolation Discovery Optimization

Compiler Optimization

Query Optimization

Hardware Design

Cluster Scheduling

Memory Allocation

Networking

Prefetching

Learning Memory Access
Patterns

Hashemi et al. (ICLR, 2018)

19

Classifying Existing Work
Anomaly Detection Forecasting Extrapolation Discovery Optimization

Compiler Optimization

Query Optimization

Hardware Design

Cluster Scheduling

Memory Allocation

Networking

Prefetching

Challenge: Quadratic number of
areas, each requiring new data
sets, libraries and interfaces.

20

Can we create reusable recipes that apply across a wide
range of different domains?
● How to translate ML predictions into system decisions.
● How to tolerate ML prediction errors.
● How to handle noisy and unpredictable data.
● How to handle workloads that drift over time.
● How to solve NP-complete problems with ML.

Conceptual Abstractions
21

Let’s look at an example.

22

4KB/2MB PageC/C++ Application

TCMalloc

string* s = new string(“Google”);
…
delete s;

Time
M

em
or

y A
dd

re
ss

Object Size

Lifetime

Example: Memory Allocation
23

“Learning-based Memory Allocation for C++ Server Workloads”, ASPLOS 2020, Martin Maas, David G. Andersen,
Michael Isard, Mohammad Mahdi Javanmard, Kathryn S. McKinley, Colin Raffel

Time

A
dd

re
ss

Page 2

Page 1

Huge Page Fragmentation

“Learning-based Memory Allocation for C++ Server Workloads”, ASPLOS 2020, Martin Maas, David G. Andersen,
Michael Isard, Mohammad Mahdi Javanmard, Kathryn S. McKinley, Colin Raffel

24

Time

A
dd

re
ss

Page 2

Long-lived object

Page 1

Huge Page Fragmentation

“Learning-based Memory Allocation for C++ Server Workloads”, ASPLOS 2020, Martin Maas, David G. Andersen,
Michael Isard, Mohammad Mahdi Javanmard, Kathryn S. McKinley, Colin Raffel

25

Time

A
dd

re
ss

Page 2

Page 1

Wasted memory!

Huge Page Fragmentation

“Learning-based Memory Allocation for C++ Server Workloads”, ASPLOS 2020, Martin Maas, David G. Andersen,
Michael Isard, Mohammad Mahdi Javanmard, Kathryn S. McKinley, Colin Raffel

26

Time

A
dd

re
ss

Page 2

Page 1

Wasted memory!

Huge Page Fragmentation
To minimize fragmentation, we need information
we do not have (the lifetime of an object).

“Learning-based Memory Allocation for C++ Server Workloads”, ASPLOS 2020, Martin Maas, David G. Andersen,
Michael Isard, Mohammad Mahdi Javanmard, Kathryn S. McKinley, Colin Raffel

27

Symbols within stack traces contain meaning and encode
programmer intent. Apply ML to this information in order
to predict object lifetimes that the allocator then uses.

 Using ML for Forecasting

1. __gnu_cxx::__g::__string_base<char, std::__g::char_traits<char>,
std::__g::allocator<char> >::_M_reserve(unsigned long)

2. proto2::internal::InlineGreedyStringParser(std::__g::basic_string<char,
std::__g::char_traits<char>, std::__g::allocator<char> >*, char const*,
proto2::internal::ParseContext*)

3. proto2::FileDescriptorProto::_InternalParse(char const*,
proto2::internal::ParseContext*)

4. proto2::MessageLite::ParseFromArray(void const*, int)
5. proto2::DescriptorPool::TryFindFileInFallbackDatabase(std::__g::basic_string<char,

std::__g::char_traits<char>, std::__g::allocator<char> > const&) const
6. proto2::DescriptorPool::FindFileByName(std::__g::basic_string<char,

std::__g::char_traits<char>, std::__g::allocator<char> > const&) const
7. proto2::internal::AssignDescriptors(proto2::internal::AssignDescriptorsTable*)
8. store2::Algorithm_descriptor()
9. store2::init_module_algorithm_parse()

10. Initializer::TypeData::RunIfNecessary(GoogleInitializer*)
11. Initializer::RunInitializers(char const*)
12. RealInit(char const*, int*, char***, bool, bool)
13. main

E.g., the name ParseContext suggests
that an object is temporary/local to the
parsing operation.

28

“Learning-based Memory Allocation for C++ Server Workloads”, ASPLOS 2020, Martin Maas, David G. Andersen,
Michael Isard, Mohammad Mahdi Javanmard, Kathryn S. McKinley, Colin Raffel

 The LLAMA Allocator
• • • • • • • • • • • • • • • • • •< 10 ms

< 100 ms

< 1 s
• • • • • • • • • •

• • • • • • • • • • • • • • • •

Huge Page
● Residual Allocation LC Lifetime Classblocks

freed to OS

freed to OS

Pack objects with the same predicted lifetime into the
same regions and fill gaps with shorter-lived objects
Allocator can detect and adapt to model mispredictions

29

“Learning-based Memory Allocation for C++ Server Workloads”, ASPLOS 2020, Martin Maas, David G. Andersen,
Michael Isard, Mohammad Mahdi Javanmard, Kathryn S. McKinley, Colin Raffel

Recipe: Separate a
policy into a predictor
and an algorithm that
can tolerate errors.

30

Prediction

Generalizes to Storage Systems

Metadata attached to storage requests helps predict behavior.

Analytics Pipeline SQL
Database

Web Frontend

Distributed FS Disk Server

Origin: B
Device: Mobile

Origin: A
Priority: Best Effort

Origin: A
Priority: Best Effort
Query: SELECT

31

“Learning on Distributed Traces for Data Center Storage Systems”, MLSys 2021, Giulio Zhou, Martin Maas

Storage Prediction Tasks
Origin: <info>
Request_Type: A/B/C/D

Disk Server

Cache? Predictable Property:
• Interarrival Times (Caching)

Algorithms:
• Cache admission and eviction.

“Learning on Distributed Traces for Data Center Storage Systems”, MLSys 2021, Giulio Zhou, Martin Maas

32

Storage Prediction Tasks
Origin: <info>
Request_Type: A/B/C/D

Disk Server

Cache? Predictable Property:
• Interarrival Times (Caching)
• File Lifetime
• Final File Size
• Read/Write Ratio

Algorithms:
• Cache admission and eviction.
• Place data on SSD vs. HDD.

“Learning on Distributed Traces for Data Center Storage Systems”, MLSys 2021, Giulio Zhou, Martin Maas

33

Challenge: Some properties
are noisy and unpredictable.

34

Unpredictable Properties
Origin: <info>
Request_Type: A/B/C/D

CDF by Request Type

Disk Server

Cache?

“Learning on Distributed Traces for Data Center Storage Systems”, MLSys 2021, Giulio Zhou, Martin Maas

35

Learning for Storage

Origin: A
Priority: Best Effort
Query: SELECT

Admit/evict object?
Memory placement?
Place on SSD or HDD?

Predicted
Distributions

Distribution-aware
Heuristic/Algorithm

36

Disk Server

Models

“Learning on Distributed Traces for Data Center Storage Systems”, MLSys 2021, Giulio Zhou, Martin Maas

Recipe: Predict
Distributions instead
of specific values.

37

Challenge: What if the
workloads shift over time?

38

“Bring Your Own Model”
39

Disk Server

Origin: A
Priority: Best Effort
Query: SELECT

Model in the system

Disk Server

Origin: A
Priority: Best Effort
Query: SELECT
Predictions

Model in the workload

“A Bring-Your-Own-Model Approach for ML-Driven Storage Placement in Warehouse-Scale Computers”, MLSys 2025, Chenxi
Yang, Yan Li, Martin Maas, Mustafa Uysal, Ubaid Ullah Hafeez, Arif Merchant, Richard McDougall

Recipe: Move the
model into the
workload.

40

Challenge: Some problems
are very sensitive to errors.

41

TPUv4 Pixel 6 Tensor SoC

Memory Allocation: Take buffers with
known start and end times and place them
in a location within on-chip memory.

ML Accelerator Compilation
42

“TelaMalloc: Efficient On-Chip Memory Allocation for Production Machine Learning Accelerators”, ASPLOS 2023, Martin Maas,
Ulysse Beaugnon, Arun Chauhan, Berkin Ilbeyi

Time

M
em

or
y A

dd
re

ss

Object Size

Lifetime

Start End

High-Level Problem
43

“TelaMalloc: Efficient On-Chip Memory Allocation for Production Machine Learning Accelerators”, ASPLOS 2023, Martin Maas,
Ulysse Beaugnon, Arun Chauhan, Berkin Ilbeyi

Given a sequence of fixed-size buffers with a known start
and end time, place them in memory such that total used
memory never exceeds capacity.

Time

M
em

or
y A

A B C
B

C

Memory Allocation
44

“TelaMalloc: Efficient On-Chip Memory Allocation for Production Machine Learning Accelerators”, ASPLOS 2023, Martin Maas,
Ulysse Beaugnon, Arun Chauhan, Berkin Ilbeyi

Heuristics: Fast, but do not always find a solution.
Solvers: Can handle complex inputs, but sometimes slow.

A Complex NP-Hard Problem
45

Limitations of Heuristics

Time

A
dd

re
ss

✘

– ✘ Buffer (1) exceeds limit

46

“TelaMalloc: Efficient On-Chip Memory Allocation for Production Machine Learning Accelerators”, ASPLOS 2023, Martin Maas,
Ulysse Beaugnon, Arun Chauhan, Berkin Ilbeyi

Limitations of Heuristics

Time

A
dd

re
ss

Time

A
dd

re
ss

✔✘

– ✘ Buffer (1) exceeds limit

47

“TelaMalloc: Efficient On-Chip Memory Allocation for Production Machine Learning Accelerators”, ASPLOS 2023, Martin Maas,
Ulysse Beaugnon, Arun Chauhan, Berkin Ilbeyi

Recipe: Enforce
correctness by using
ML to guide a solver.

48

Decision

Success/fail

Backtrack
Query constraints

The Telamon Framework

Search
Policy CP Solver

49

“TelaMalloc: Efficient On-Chip Memory Allocation for Production Machine Learning Accelerators”, ASPLOS 2023, Martin Maas,
Ulysse Beaugnon, Arun Chauhan, Berkin Ilbeyi

Pixel 6 TPUv4

Shipping in Production
50

“TelaMalloc: Efficient On-Chip Memory Allocation for Production Machine Learning Accelerators”, ASPLOS 2023, Martin Maas,
Ulysse Beaugnon, Arun Chauhan, Berkin Ilbeyi

Decision

Success/fail

Backtrack
Query constraints

Where can we apply ML?

Search
Policy CP Solver

51

“TelaMalloc: Efficient On-Chip Memory Allocation for Production Machine Learning Accelerators”, ASPLOS 2023, Martin Maas,
Ulysse Beaugnon, Arun Chauhan, Berkin Ilbeyi

The Backtracking Problem
How far to
backtrack?

52

Imitation Learning

Features

Training Set
Minimum

backtrack point

Best backtrack
point

Model Training

TelaMalloc

Learned backtracking

Randomized
TelaMalloc Run

Backtrack!

ILP Solver

53

“TelaMalloc: Efficient On-Chip Memory Allocation for Production Machine Learning Accelerators”, ASPLOS 2023, Martin Maas,
Ulysse Beaugnon, Arun Chauhan, Berkin Ilbeyi

Recipe: Learn a
heuristic using
imitation learning.

54

We have just seen five different ML for Systems recipes:
● Split policies into prediction + error-tolerant algorithm.
● Predict distributions for noisy data.
● Move the models out of the system if drift is high.
● Combine ML with a solver if high precision is required.
● Use imitation learning if problems can be solved offline.

This is only a small subset!

Recap: ML for Systems Recipes
55

Catalyst #1:
Critical mass of
generalizable
design recipes.

56

Talk Outline
Conceptual Abstractions
Standardized ways for building learning into systems1
ML Support in Systems
Best practices for deploying learning-based systems2
Growing AI Capabilities
GenAI and other approaches3

57

Talk Outline
Conceptual Abstractions
Standardized ways for building learning into systems1
ML Support in Systems
Best practices for deploying learning-based systems2
Growing AI Capabilities
GenAI and other approaches3

58

A common perception is that
using ML in low-level systems
is not practical.
Current systems are not designed to use ML, just like
systems were not always designed for multi-threading.

59

Building ML into VM allocation for Google Compute
Engine (GCE). 100s to 10,000+ hosts per cluster, 10-100
scheduling request/second per cluster,

Cluster Scheduling at Google
60

Host

VM #1VM #2

VM #3

VM #1

Empty host

Host Host

Scoring
Pool
Scheduler
(Borg Prime)VM

Request

“LAVA: Lifetime-Aware VM Allocation with Learned Distributions and
Adaptation to Mispredictions”, MLSys 2025, Jianheng Ling, Pratik Worah, Yawen
Wang, Yunchuan Kong, Chunlei Wang, Clifford Stein, Diwakar Gupta, Jason
Behmer, Logan A. Bush, Prakash Ramanan, Rajesh Kumar, Thomas Chestna,
Yajing Liu, Ying Liu, Ye Zhao, Kathryn S. McKinley, Meeyoung Park, Martin Maas

An instance of the predictor+algorithm recipe applied to
VM allocation. Approach: Lifetime-Aware VM Allocation.

The LAVA Approach
61

Host

VM #1VM #2

VM #3

VM #1

Empty host

Pool
Scheduler
(Borg Prime)

VM Lifetime

Predictions

Host Host

VM
Request

Lifetime-Aware
VM Allocation

“LAVA: Lifetime-Aware VM Allocation with Learned Distributions and
Adaptation to Mispredictions”, MLSys 2025, Jianheng Ling, Pratik Worah, Yawen
Wang, Yunchuan Kong, Chunlei Wang, Clifford Stein, Diwakar Gupta, Jason
Behmer, Logan A. Bush, Prakash Ramanan, Rajesh Kumar, Thomas Chestna,
Yajing Liu, Ying Liu, Ye Zhao, Kathryn S. McKinley, Meeyoung Park, Martin Maas

Distribution-based prediction
with repredictions over time.

The LAVA Approach
62

Host

VM #1VM #2

VM #3

VM #1

Empty host

Pool
Scheduler
(Borg Prime)

VM Lifetime

Predictions

Host Host

VM
Request

Lifetime-Aware
VM Allocation

“LAVA: Lifetime-Aware VM Allocation with Learned Distributions and
Adaptation to Mispredictions”, MLSys 2025, Jianheng Ling, Pratik Worah, Yawen
Wang, Yunchuan Kong, Chunlei Wang, Clifford Stein, Diwakar Gupta, Jason
Behmer, Logan A. Bush, Prakash Ramanan, Rajesh Kumar, Thomas Chestna,
Yajing Liu, Ying Liu, Ye Zhao, Kathryn S. McKinley, Meeyoung Park, Martin Maas

Scheduling algorithm corrects for
mispredictions, similar to LLAMA.

The LAVA Approach
63

Host

VM #1VM #2

VM #3

VM #1

Empty host

VM Lifetime

Predictions

Host Host

VM
Request

Lifetime-Aware
VM Allocation

Pool
Scheduler
(Borg Prime)

“LAVA: Lifetime-Aware VM Allocation with Learned Distributions and
Adaptation to Mispredictions”, MLSys 2025, Jianheng Ling, Pratik Worah, Yawen
Wang, Yunchuan Kong, Chunlei Wang, Clifford Stein, Diwakar Gupta, Jason
Behmer, Logan A. Bush, Prakash Ramanan, Rajesh Kumar, Thomas Chestna,
Yajing Liu, Ying Liu, Ye Zhao, Kathryn S. McKinley, Meeyoung Park, Martin Maas

Deploying learning-based systems has unique challenges,
which we expect to generalize across different settings:
● Latency Constraints.
● Safety and correctness guarantees.
● Integration into rollout processes.
● Explainability and interpretability.

Deploying ML in Systems
64

Prediction is on the critical path for VM scheduling and
may involve re-scoring O(10-100) VMs per request.
● Gradient boosted trees.
● Run within the scheduler

itself, not on other servers.
● Median latency is 9 us.

Prediction Latency
65

Model stays up-to-date for months, is updated regularly.
● Offline training with careful backtesting.
● Model is subject to testing and gradual roll-out.
● Careful monitoring for

production regressions.
● Ran pilots with causal

analysis and A/B testing.

Safety & Correctness
66

Rollout Processes
Option 1: Roll out the model independently of the system.
● ✔ Allows updating model more often than the system.
● ✘ Might break verification assumptions.
Option 2: Roll out model with the system binary. (Ours)
● ✔ Can leverage existing rollout testing.
● ✘ Model might be stale when it reaches production.

67

Explainability/Interpretability
● Model the problem in a way that it becomes naturally

interpretable (e.g., predictor+algorithm recipe).
● Use explainable model libraries (e.g., decision trees).
● Use interpretability techniques (e.g., TCAV).

68

Feature importance for LAVA
models, calculated by the
gradient boosted tree library.

We had to build a lot of custom
infrastructure and change our
systems to integrate ML.
Building general systems that enable such approaches is
a great research opportunity for academia and industry.

69

There is sometimes a
perception that ML for
Systems is difficult to work
on in academia.

70

Myths about ML for Systems
Myth #1: ML for Systems needs lots of data.
● Academia-scale system deployments often produce

sufficient amounts of data.
● Among ML application areas, this might make ML for

Systems particularly well-suited for academia.
● The lifetime-based memory allocation paper could

have been done in academia.

71

Myths about ML for Systems
Myth #2: ML for Systems needs lots of compute.
● A lot of work can be done without fine-tuning or other

expensive model training.
● Cheap models (e.g., random forests) are often enough.
● Can build on publicly available models, in the cloud or

open-weight models (e.g., Gemma).
● Leverage in-context learning instead of training.

72

Myths about ML for Systems
Myth #3: I need to be a Machine Learning Expert.
● Many problems in this space are systems problems.
● Can often treat ML as opaque building block.
● LLMs further reduce the learning curve.

73

Example: ML-Enabled Systems
Lots of work in the community (an incomplete list):
● LAKE: ML-enabled OS Kernel.

“Towards a Machine Learning-Assisted Kernel with LAKE”, Henrique Fingler, et al., ASPLOS’23.

● ArchGym: Environment for ML for hardware.
“ArchGym: An Open-Source Gymnasium for Machine Learning Assisted Architecture Design”, Srivatsan Krishnan, et al., ISCA’23.

● DeathStarBench/Sage/Seer: ML for microservices.
“An Open-Source Benchmark Suite for Microservices and Their Hardware-Software Implications for Cloud & Edge Systems”, Yu Gan, et al., ASPLOS’19.

● MLGO: Integrating ML into LLVM.
“MLGO: a Machine Learning Guided Compiler Optimizations Framework”, Mircea Trofin, et al., arXiv:2101.04808.

● Scalene: Integrating ML into performance profiling.
“Triangulating python performance issues with SCALENE”, Emery Berger, et al., OSDI’23.

74

Example: ML Libraries
Easy-to-deploy random forest library:
● Trains from the command line.
● Integrates into C++, Python

binaries, etc. at very low latency.
● Can ship models with a binary or

load them from a file system.
● Explainability support built in. Latency of Telamon

models: 2us/sample
Yggdrasil Decision Forests: A Fast and Extensible Decision Forests Library, Guillame-Bert et al., KDD 2023

75

Example: HW/SW Co-Design
Opportunities for academic research on HW/SW
co-design for learning-based systems.

● What hardware extensions would facilitate machine
learning in low levels of the stack?

● The emergence of the open RISC-V Instruction Set
greatly facilitates this kind of work:
○ Enables research using real hardware designs.
○ An opportunity to influence a real ISA?

76

Example: Industry Datasets

https://github.com/google-research-datasets/thesios

2-month-long synthesized
traces from 3 different
Google storage clusters,
containing approximately
2.5 billion I/O records.

77

“Thesios: Synthesizing Accurate Counterfactual I/O Traces from I/O Samples”, ASPLOS 2024, Phitchaya Mangpo Phothilimthana,
Saurabh Kadekodi, Soroush Ghodrati, Selene Moon, Martin Maas

https://github.com/google-research-datasets/thesios

Catalyst #2:
Systems and
infrastructure
that facilitate the
integration of ML.

78

Talk Outline
Conceptual Abstractions
Standardized ways for building learning into systems1
ML Support in Systems
Best practices for deploying learning-based systems2
Growing AI Capabilities
GenAI and other approaches3

79

Talk Outline
Conceptual Abstractions
Standardized ways for building learning into systems1
ML Support in Systems
Best practices for deploying learning-based systems2
Growing AI Capabilities
GenAI and other approaches3

80

Over the past 5 years, we have
seen a rapid increase in AI
capabilities, especially GenAI.

81

Capability Delta: What are things that AI can do that we
cannot possibly do with conventional approaches?
● In image classification, no non-learning technique

achieved the performance of DNNs.
● No non-AI technique was able to generate

photorealistic images like GANs and later GenAI.
● In the natural sciences, AlphaFold enabled protein

folding at a scale that was previously impossible.

The AI Capability Delta
82

What is the Capability Delta
for Systems?

83

What if the value of AI is not
only to improve systems, but
to accelerate their evolution?

84

Once a systems problem is established, researchers
spend years or decades to optimize solutions.

The System Optimization Loop
85

Systems Problem

Research + Engineering Community

Once a systems problem is established, researchers
spend years or decades to optimize solutions.

The System Optimization Loop
86

Berkeley NOW ⇒ MapReduce ⇒ …
⇒ Spark, Beam and others

New programming models, optimizations

Once a systems problem is established, researchers
spend years or decades to optimize solutions.

The System Optimization Loop
87

System R ⇒ Oracle DB ⇒ …
⇒ Modern Databases

Query optimization, JITs, cardinality
estimation, performance tuning,...

Can AI improve the optimization loop of systems?
● Quality: Find optimizations a human did not find or

would not have thought of.
● Velocity: Get to an efficient system more quickly.
● Coverage: Optimize systems that would otherwise not

have enough support to be optimized.

Automatic Optimization
88

ECO – Efficient Code Optimizer
Hannah Lin, Martin Maas, Maximilian Roquemore, Arman Hasanzadeh, Fred Lewis, Yusuf Simonson,
Tzu-Wei Yang, Amir Yazdanbakhsh, Deniz Altinbüken, Florin Papa, Maggie Nolan Edmonds, Aditya
Patil, Don Schwarz, Satish Chandra, Chris Kennelly, Milad Hashemi, Parthasarathy Ranganathan

89

More details: arXiv:2503.15669

Optimizing Google’s Code
Google’s Planet Scale Infrastructure:
● A global fleet of warehouse-scale computers.
● Mono-repo with billions of lines of code.
● Engineers spend a large amount of time optimizing

code, including with automated tools.
ECO uses AI to improve the optimization loop.

Potvin, R., & Levenberg, J. (2016). Why Google stores billions of lines of code in a single repository.
Communications of the ACM, 59(7), 78-87.

90

LLM

Scaling Up Code Optimization
Code

Repository Code Retrieval
& Ranking

Anti-Patterns Candidate

Task: Identify and
eliminate redundant
lookups in map or set
operations in C++ to
optimize performance …

LLM Edit Generation

Code Edit

Edit Validation

Code Review Submit & Monitoring

Check for const reference replacement
You are a C++ performance engineer reviewing code for optimal usage of const references.
Assess the code snippet's handling of local variable declarations and their initialization.

Monitoring

Code Review

Check for const reference replacement
You are a C++ performance engineer reviewing code for optimal usage of const references.
Assess the code snippet's handling of local variable declarations and their initialization.You are an expert C++ performance

engineer reviewing a code change.
The goal is to reduce redundant …

91

LLM

Scaling Up Code Optimization
Candidate

Task: Identify and
eliminate redundant
lookups in map or set
operations in C++ to
optimize performance …

LLM Edit Generation

Code Edit

Edit Validation

Code Review Submit & Monitoring

Check for const reference replacement
You are a C++ performance engineer reviewing code for optimal usage of const references.
Assess the code snippet's handling of local variable declarations and their initialization.

Monitoring

Code Review

Check for const reference replacement
You are a C++ performance engineer reviewing code for optimal usage of const references.
Assess the code snippet's handling of local variable declarations and their initialization.You are an expert C++ performance

engineer reviewing a code change.
The goal is to reduce redundant …

Code
Repository Code Retrieval

& Ranking

Anti-Patterns

92

Code Edit Anti-Patterns
Find examples of performance-improving changes in
the edit history of Google’s large mono-repo.
● Static Analysis
● Annotations
● Keyword Search
● Documentation
Over 55K changes stored in a database.

93

LLM

Scaling Up Code Optimization
Candidate

Task: Identify and
eliminate redundant
lookups in map or set
operations in C++ to
optimize performance …

LLM Edit Generation

Code Edit

Edit Validation

Code Review Submit & Monitoring

Check for const reference replacement
You are a C++ performance engineer reviewing code for optimal usage of const references.
Assess the code snippet's handling of local variable declarations and their initialization.

Monitoring

Code Review

Check for const reference replacement
You are a C++ performance engineer reviewing code for optimal usage of const references.
Assess the code snippet's handling of local variable declarations and their initialization.You are an expert C++ performance

engineer reviewing a code change.
The goal is to reduce redundant …

Code
Repository Code Retrieval

& Ranking

Anti-Patterns

94

Use continuous profiling across our fleet and annotate
functions with resource consumption.
● A large fraction of resources are in library functions

(e.g., vector::push_back).
● Roll up resource to

identify the most
relevant functions.

Capturing Candidates
95

Code Retrieval
Encode candidates and store them
in a vector database (ScaNN).
Used different embeddings (mappings
from code into the vector space):
● Bag of words
● Deep embeddings

96

Scaling Up Code Optimization

LLM Edit Generation Edit Validation

Code Review Submit & Monitoring

Check for const reference replacement
You are a C++ performance engineer reviewing code for optimal usage of const references.
Assess the code snippet's handling of local variable declarations and their initialization.

Monitoring

Code Review

Check for const reference replacement
You are a C++ performance engineer reviewing code for optimal usage of const references.
Assess the code snippet's handling of local variable declarations and their initialization.You are an expert C++ performance

engineer reviewing a code change.
The goal is to reduce redundant …

Code
Repository Code Retrieval

& Ranking

Anti-Patterns

LLM

Candidate

Task: Identify and
eliminate redundant
lookups in map or set
operations in C++ to
optimize performance …

Code Edit

97

LLM

Scaling Up Code Optimization

LLM Edit Generation Edit Validation

Code Review Submit & Monitoring

Check for const reference replacement
You are a C++ performance engineer reviewing code for optimal usage of const references.
Assess the code snippet's handling of local variable declarations and their initialization.

Monitoring

Code Review

Check for const reference replacement
You are a C++ performance engineer reviewing code for optimal usage of const references.
Assess the code snippet's handling of local variable declarations and their initialization.You are an expert C++ performance

engineer reviewing a code change.
The goal is to reduce redundant …

Code
Repository Code Retrieval

& Ranking

Anti-Patterns Candidate

Task: Identify and
eliminate redundant
lookups in map or set
operations in C++ to
optimize performance …

Code Edit

98

Validation & Code Review
Validate changes via LLM prompting and testing.
● Leverage automated testing and self-review to

ensure changes are correct and high quality.
● Sent out to human reviewers for code review.
● After submission, monitor impact fleet-wide.
Note that the human is still in the loop, but we rapidly
speed up and scale up the ability to optimize.

99

Impact
● Over 25K lines of code changes submitted in 1

year.
● Saved the equivalent of 2M (normalized) CPU cores.
● Less than 0.5% of changes had to be rolled back.

100

How did AI do better than the human optimization loop?
● Quality: Optimizing highly optimized code that was

already optimized by humans.
● Velocity: 6.4K changes submitted in 1 year.
● Coverage: Optimized code that individually consumes

too little resources to justify the human effort.
AI enables new systems approaches today.

Automatic Optimization
101

Forward-Looking Directions

102

Reasoning can unlock new systems capabilities. Consider
deciding which of two programs will complete first:

AI Reasoning Capabilities
103

p = new File(“/tmp/book.txt”);
for (i = 0; i < kNumPages; ++i) {
 convertToJPEG(p.ReadNext());
}

p = new File(“/tmp/movie.avi”);
for (i = 0; i < kNumFrames; ++i) {
 convertToJPEG(p.ReadNext());
}

To a compiler, these two programs look the same, but a
human would be able to tell the likely answer.

LLM Response
104

What could systems do with these capabilities?

Gemini 2.0 Flash

Catalyst #3:
GenAI enables
new approaches
that would not be
possible without it.

105

Talk Outline
Conceptual Abstractions
Standardized ways for building learning into systems1
ML Support in Systems
Best practices for deploying learning-based systems2
Growing AI Capabilities
GenAI and other approaches3

106

Talk Outline
Conceptual Abstractions
Standardized ways for building learning into systems1
ML Support in Systems
Best practices for deploying learning-based systems2
Growing AI Capabilities
GenAI and other approaches3

107

Conclusion

Improved abstractions and support can create a positive
feedback loop for ML for Systems adoption.
Many of the challenges are similar to transitions the
systems community has made before (single-node to
distributed systems, single-core to multi-core).
Growing AI capabilities generate new opportunities that
would not have been possible before.

Conclusion
109

Has ML for Systems reached
an inflection point?
All the ingredients are there.
What it will look like and when it will manifest depends
on the people in this room.

110

Thank you.
Martin Maas
mmaas@google.com

111

Presented work by: Aditya Patil, Amir Yazdanbakhsh, Arif Merchant, Arman
Hasanzadeh, Arun Chauhan, Berkin Ilbeyi, Chenxi Yang, Chris Kennelly, Chunlei Wang,
Clifford Stein, Colin Raffel, David G. Andersen, Deniz Altinbüken, Diwakar Gupta, Don
Schwarz, Florin Papa, Fred Lewis, Giulio Zhou, Hannah Lin, Jason Behmer, Jianheng
Ling, Kathryn S. McKinley, Logan A. Bush, Maggie Nolan Edmonds, Maximilian
Roquemore, Meeyoung Park, Michael Isard, Milad Hashemi, Mohammad Mahdi
Javanmard, Mustafa Uysal, Parthasarathy Ranganathan, Phitchaya Mangpo
Phothilimthana, Prakash Ramanan, Pratik Worah, Rajesh Kumar, Richard McDougall,
Satish Chandra, Saurabh Kadekodi, Selene Moon, Soroush Ghodrati, Thomas
Chestna, Tzu-Wei Yang, Ubaid Ullah Hafeez, Ulysse Beaugnon, Yajing Liu, Yan Li,
Yawen Wang, Ye Zhao, Ying Liu, Yunchuan Kong, Yusuf Simonson + others.

